Promotion of PEM self-humidifying effect by nanometer-sized sulfated zirconia-supported Pt catalyst hybrid with sulfonated poly(ether ether ketone).
نویسندگان
چکیده
A self-humidifying membrane based on low-cost sulfonated poly (ether ether ketone) (SPEEK) hybrid with sulfated zirconia (SO4(2-)/ZrO2, SZ)-supported platinum catalyst (Pt-SZ catalyst) was investigated for fuel cell applications. The SZ particle, a solid-state superacid with hygroscopic and high proton conductivity properties, was employed as the catalyst support. The SPEEK/Pt-SZ self-humidifying membrane was characterized by TEM and SEM coupled with EDX. FT-IR was conducted to verify the effect of SPEEK/Pt-SZ membrane on catalytic combination of crossover hydrogen and oxygen. To display the advantages of Pt-SZ catalyst as the additive, the IEC, water uptake, proton conductivity, single-cell performance, and areal resistance measurements were compared between the plain SPEEK membrane, SPEEK/Pt-SiO2 membrane, and the SPEEK/Pt-SZ membrane. The SPEEK/Pt-SZ membrane exhibited the highest IEC value, proton conductivity, single-cell performance, and the lowest areal resistance relative to the plain SPEEK and SPEEK/Pt-SiO2 membranes. The SPEEK/Pt-SZ self-humidifying membrane exhibited peak power density of 1.0 W/cm2 under dry operation condition compared with 0.89 W/cm2 and 0.58 W/cm2 of SPEEK/Pt-SiO2 and plain SPEEK membranes, respectively. The incorporation of the catalytic, hygroscopic and proton conductive Pt-SZ catalyst in the SPEEK/Pt-SZ self-humidifying membrane facilitated water balance and proton conduction, and accordingly improved its single cell performance under dry operation. In addition, the enhanced OCV and the decreased areal ohmic resistance confirmed the promotion effect of Pt-SZ catalyst in the self-humidifying membrane on suppressing reactant crossover and the membrane self-humidification.
منابع مشابه
An overview of organic/inorganic membranes based on sulfonated poly ether ether ketone for application in proton exchange membrane fuel cells
Nowadays, proton exchange membrane fuel cells (PEMFCs) are the most promising green energy conversion devices for portable and stationary applications. Traditionally, these devices were based onperfluoro-sulfonic acid electrolytes membranes, given the commercial name Nafion. Nafion is the mostused electrolyte membrane till now; because of its high electrochemical properties su...
متن کاملPreparation and Physical Characterization of Sulfonated Poly (Ether Ether Ketone) and Polypyrrole Composite Membrane
Sulfoanted poly(ether ether ketone) membranes were prepared by the sulfonating agent sulfuric acid. These membranes were modifed by incorporating conducting polymer polypyrrole in order to increase the ionic conductivity and reduce the methanol transmission rate. The modifed composite membranes were then compared on the basis of ionic conductivity, methanol transmission...
متن کاملA sulfonated poly(arylene ether ketone)/polyoxometalate-graphene oxide composite: a highly ion selective membrane for all vanadium redox flow batteries.
A highly ion-selective membrane for vanadium redox flow batteries (VRBs) consisting of sulfonated poly(arylene ether ketone) (SPAEK) and polyoxometalate coupled with a graphene oxide was designed and fabricated. The SPAEK/PW-mGO composite membrane showed an effectively low self-discharge rate and excellent Coulombic efficiency (98.73%) in VRBs.
متن کاملAn ultrathin self-humidifying membrane for PEM fuel cell application: fabrication, characterization, and experimental analysis.
An ultrathin poly(tetrafluoroethylene) (PTFE)-reinforced multilayer self-humidifying composite membrane (20 microm, thick) is developed. The membrane is composed of Nafion-impregnated porous PTFE composite as the central layer, and SiO2 supported nanosized Pt particles (Pt-SiO2) imbedded into the Nafion as the two side layers. The proton exchange membrane (PEM) fuel cell employing the self-humi...
متن کاملEffect of Copolymer Composition on the Oxygen Transport Properties of Sulfonated Poly(arylene ether sulfone) and Sulfonated Poly(sulfide sulfone) PEMs
Mass transport properties were investigated by means of the chronoamperometry method for a series of sulfonated poly~arylene ether sulfone! ~SPES! membranes and sulfonated polysulfide sulfone ~SPSS! polymers of various ion exchange capacities ~IEC! at a Pt ~microelectrode!/proton exchange membrane ~PEM! interface. The temperature and pressure dependence of oxygen transport parameters show simil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 111 23 شماره
صفحات -
تاریخ انتشار 2007